STUDY MODULE DE	SCRIPTION FORM		
Name of the module/subject		Code 1010341711010349410	
Field of study	Profile of study (general academic, practical)	Year /Semester	
Mathematics in Technology	general academic	1/1	
Elective path/specialty -	Subject offered in: Polish	Course (compulsory, elective) obligatory	
Cycle of study:	Form of study (full-time,part-time)		
First-cycle studies	full-time		
(Polish Qualifications Framework level six)			
No. of hours		No. of credits	
Lecture: 30 Classes: - Laboratory: 30	Project/seminars:	- 4	
Status of the course in the study program (Basic, major, other)	(university-wide, from another fi	eld)	
	Unive	iversity-wide	
Education areas and fields of science and art		ECTS distribution (number and %)	
Technical science		4 100%	
Technical science		4 100%	
Responsible for subject / lecturer:			
dr inż. Karol Gajda			
email: karol.gajda@put.poznan.pl			

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Basic knowledge with range of secondary school. (PQF 4)	
2	Skills	Computer skills. The ability to effectively self-education in a field related to the chosen field of study. (PQF 4)	
3	Social competencies	Knowledge of the limits of their knowledge and understanding of the need for further education. (PQF 4)	

Assumptions and objectives of the course:

Presentation of programming techniques and data structures used in small and medium scale programming.

Study outcomes and reference to the educational results for a field of study

Knowledge:

tel.61 665 2805

Faculty of Electrical Engineering ul. Piotrowo 3A 60-965 Poznań

- 1. has expanded and in-depth knowledge of various branches of higher mathematics and detailed knowledge of the applications of mathematical methods and tools in technical sciences [K_W01 (P6S_WG)]
- 2. has the ordered and theoretically founded knowledge of computer science, including numerical methods; knows at least one software package or programming language [K_W06 (P6S_WG)]

Skills:

- 1. can construct an algorithm for solving a simple engineering task and implement it and test it in a chosen programming environment $[K_U04 (P6S_UW)]$
- 2. can operate equipment, tools, etc. in accordance with general requirements and technical documentation; knows how to apply the principles of health and safety at work [K_U09 (P6S_UW)]
- 3. can independently plan and implement self-education in order to raise and update their competences [K_U15 (P6S_UU)]

Social competencies:

- 1. is aware of the level of his knowledge in relation to the conducted research in exact and technical sciences [K_K01 (P6S_KK)]
- 2. is aware of deepening and expanding knowledge to solve newly created technical problems [K_K02 (P6S_KK)]

Assessment methods of study outcomes

- evaluation of knowledge acquired in the lecture
- skills assessment related to the implementation of project tasks
- evaluation of student preparation for classes and laboratory evaluation of skills related to the implementation of laboratory exercises
- evaluation of reports
- evaluation of team skills

Course description

Date of revision: 31/10/2018

The basic elements of Java language:

- data types,
- variables,
- operators,
- strings,
- input and output,
- controlling the program execution,
- big numbers,
- tables.

Objects and classes.

Inheritance.

Applied education methods

1) lectures

- lecture with multimedia presentation supplemented with examples given on the board,
- a lecture conducted in an interactive manner with formulating questions to a group of students or to specific students indicated,
- students' activity during classes is taken into account when issuing the final mark,
- during the lecture initiating the discussion,
- theory presented in close connection with practice,
- theory presented in connection with the current knowledge of students,
- presenting a new topic preceded by a reminder of related content known to students in other subjects.
- 2) laboratory:
- laboratories supplemented with multimedia presentations (including: drawings, photos, animations, sound, films),
- detailed reviewing of reports by the laboratory chair and discussions on comments,
- using tools that enable students to perform tasks at home (eg open source software),
- demonstrations,
- work in teams,
- computational experiments.

Basic bibliography:

1. G. Cornell, C. Horstmann, Core Java.

Additional bibliography:

- 1. R. Sedgewick, K. Wayne, Introduction to Programming in Java: An Interdisciplinary Approach (2nd Edition)
- 2. B. Eckel, Thinking in Java.

Result of average student's workload

Activity	Time (working
	hours)

Poznan University of Technology Faculty of Electrical Engineering

1. participation in lectures (15x2 hrs.)	30			
2. participation in laboratory classes (15x2 hrs.)	30			
3. participation in the consultations related to the implementation of the education process, in particular laboratory / project	10			
4. completion (within own work) reports on laboratory exercises	5			
5. write a program / programs, commissioning and verification (time outside of the classroom laboratory)	15			
6. preparation for laboratory exercises	15			
7. preparation for tests / test	5			
8. read with the specified literature / teaching materials	5			
Student's workload				

Source of workload	hours	ECTS
Total workload	115	4
Contact hours	70	2
Practical activities	75	3